Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurotoxicol Teratol ; 102: 107331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38301979

RESUMO

Bisphenol F (BPF) is a potential neurotoxicant used as a replacement for bisphenol A (BPA) in polycarbonate plastics and epoxy resins. We investigated the neurodevelopmental impacts of BPF exposure using Drosophila melanogaster as a model. Our transcriptomic analysis indicated that developmental exposure to BPF caused the downregulation of neurodevelopmentally relevant genes, including those associated with synapse formation and neuronal projection. To investigate the functional outcome of BPF exposure, we evaluated neurodevelopmental impacts across two genetic strains of Drosophila- w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We found that BPF exposure in w1118 Drosophila caused hypoactive larval locomotor activity, decreased time spent grooming by adults, reduced courtship activity, and increased the severity but not frequency of ß-lobe midline crossing defects by axons in the mushroom body. In contrast, although BPF reduced peristaltic contractions in FXS larvae, it had no impact on other larval locomotor phenotypes, grooming activity, or courtship activity. Strikingly, BPF exposure reduced both the severity and frequency of ß-lobe midline crossing defects in the mushroom body of FXS flies, a phenotype previously observed in FXS flies exposed to BPA. This data indicates that BPF can affect neurodevelopment and its impacts vary depending on genetic background. Further, BPF may elicit a gene-environment interaction with Drosophila fragile X messenger ribonucleoprotein 1 (dFmr1)-the ortholog of human FMR1, which causes fragile X syndrome and is the most common monogenetic cause of intellectual disability and autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Síndrome do Cromossomo X Frágil , Fenóis , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Síndrome do Cromossomo X Frágil/induzido quimicamente , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Transtorno do Espectro Autista/metabolismo , Corpos Pedunculados/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Drosophila , Compostos Benzidrílicos/toxicidade , Expressão Gênica
2.
Cladistics ; 38(2): 204-226, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277891

RESUMO

Pollen, the microgametophyte of seed plants, has an important role in plant reproduction and, therefore, evolution. Pollen is variable in, for example, size, shape, aperture number; these features are particularly diverse in some plant taxa and can be diagnostic. In one family, Boraginaceae, the range of pollen diversity suggests the potential utility of this family as a model for integrative studies of pollen development, evolution and molecular biology. In the present study, a comprehensive survey of the diversity and evolution of pollen from 538 species belonging to 72 genera was made using data from the literature and additional scanning electron microscopy examination. Shifts in diversification rates and the evolution of various quantitative characters were detected, and the results revealed remarkable differences in size, shape and number of apertures. The pollen of one subfamily, Boraginoideae, is larger than that in Cynoglossoideae. The diversity of pollen shapes and aperture numbers in one tribe, Lithospermeae, is greater than that in the other tribes. Ancestral pollen for the family was resolved as small, prolate grains that bear three apertures and are iso-aperturate. Of all the tribes, the greatest number of changes in pollen size and aperture number were observed in Lithospermeae and Boragineae, and the number of apertures was found to be stable throughout all tribes of Cynoglossoideae. In addition, the present study showed that diversification of Boraginaceae cannot be assigned to a single factor, such as pollen size, and the increased rate of diversification for species-rich groups (e.g. Cynoglossum) is not correlated with pollen size or shape evolution. The palynological data and patterns of character evolution presented in the study provide better resolution of the roles of geographical and ecological factors in the diversity and evolution of pollen grains of Boraginaceae, and provide suggestions for future palynological research across the family.


Assuntos
Boraginaceae , Genes de Plantas , Microscopia Eletrônica de Varredura , Pólen , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA